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The behavior of the solutions of Eq. (1.1) as t ---) = in the case of a sufficiently small 
parameter e is investigated. It is assumed that the expansion of the function f (x) in 

powers of z begins with ~2. Familiar methods make it possible to solve the problem in 
the case where the function cp (t) is periodic or almost periodic [I]. The present paper 
concerns the case where the function cp (t) is aperiodic but tends sufficiently rapidly to 
zero as t 2 + CI. It is shown that the solution of the Cauchy problem with zero initial 
conditions tends asymptotically, as t ---, + x and for sufficiently small values of the 
parameter E , to a certain periodic solution of Eq. (1.10). A series asymptotic in the 
parameter E into which the solution can be expanded is constructed. 

1. Formulation of the problem. Analyair of the linearized 
problem. Let us consider the ordinary differential equation 

z” + 5 = f (Z) i- ET (t) (1.1) 

where F > 0 is a small parameter and cp (t) is a function continuous for 0 < t < + u 

satisfies the following condition for some 1~ > 0 : 

sup {eyq rp (t) 1 1. < + G, O<t< +w Ii.?) 

The series expansion of the function f (x) in powers of .r begins with terms of the 
order of I? , f(x) = (.$ + . ..f c,m + . . . ( I x I < 20) (1.3) 

Equation (1.1) can be interpreted as the equation of motion of a conservative system 
with one degree of freedom. Let us consider the motions which arise out of the rest state. 

In seeking the solution of Eq. (1.1) under zero initial conditions in the form of a series 
in powers of the small parameter e, we quickly realize that it is impossible to determine 
all the coefficients of this series in such a way that they are bounded functions for 

o<t< +m. We propose a different method of solution. 

Let us begin by considering the linear equation 

x” + x = F (t) (1.4) 

The solution of Eq. (1.4) under arbitrary initial conditions is of the form 

F (r)cosrdT] +cost[r(O)-~F(r)sinrd;l (1.5) 

Let the function F (t) satisfy condition (1.2). We introduce the notation 
t t 

s F = sin t 
c 

I 
F(-c)coszdt-cost F (z) sin z dt 

c 
+m 

k 

L1 F = T F(t) cos t dt, 

+oo 

Lz F = 
s 

F (t) sin t dt 

b 0 

(1.6) 
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This enables us to rewrite expression (1.5) in the form 

5 (t) = sin t [x’ (0) + LrF] + cost [I (0) - L,F] + SF (1.7) 

L e m m a 1.1 . The solution of Eq. (1.4) under given initial conditions tends to zero 
as t-r + -m if and only if 

I’ (0) + LIF = 0, x (0) - L,F = 0 (1.8) 

The proof follows immediately from (1.7) and from the fact that SF --$ 0 as t ---t + .w. 
If F = acp, then the solution in the case of zero initial conditions can be written as 

x (t) = EA cos (t -a) + ES~, Llcp = Asina, L,T = -Acosa (1.9) 

Formula (1.9)implies that as t --f + = the solution of inhomogeneous linear equation 
(1.4) under zero initial conditions tends to a certain solution of the homogeneous equa- 
tion. Let us suppose that the solution of nonlinear equation (1.1) tends to a certain peri- 
odic solution of the equation 

Z” + x = f (x) (1.10) 
as t-+ + ci. 

Further on we shall prove the validity of this hypothesis. 

2. Reducing the problem to a system of functional equation,. 
The problem of determining the periodic solutions of Eq. (1.10) has been thoroughly 
investigated. It is sufficient to construct an even solution ; any other solution can then 
be obtained by an arbitrary shift of the independent variable. Following the classical 

rnethod of Liapunov [l], we set 

t = 71/a (p), a (p) = 1 _I- a$ + . ..+ a&n + . . . (2.1) 

and seek the solution in the form of a series in powers of a small parameter, 

x (r) = /Ax1 (a) +...+ un 5n (a) + . . (2.2) 

The unknown numbers ak can be determined from the condition of absence of secular 
terms in the expressions for zk. We know that series (2.1) and (2.2) converge for suffi- 
ciently small values of the parameter E, and that series (2.2) converges uniformly. The 
series obtainable by term-by-term differentiation of (2.2) also converge uniformly. Let 
us write out the explicit expressions for the first coefficents in expansions (2.1) and(2.2). 

ar = 0, a, = 5!6~1 $ 3!4r3 

II (t) = CO%, x2 (T) = c3 (l/2 - r/,cos2z) (2.3) 

Shifting the independent variable and converting back to the variable t, we can write 
out the periodic solution of Eq. (1.10) in the form 

03 

u(r, IL, a,=2 “JO(p)(t--)]uk 
k=l 

w (p) = [a (p)] -I’2 = 1 - uZ (5/12Ca + 3hc3) f . . . (2.4) 

The values of the function u (t, p, b) and its derivative for t= 0 are analytic func- 
tions of the parameters p and b , 

co 00 

~(0, p, b)= 2 ~,(ob)p~, u-(0, p, b)= 2 oxk’(-Wpk (2.5) 
k=l I.=1 

Making use of formulas (2.3). we can rewrite (2.5) as 

u (0, p, b) = p cos b + G1 (p, b)p, u’ (0, CL, b) = P SinQ + 52 Ct b) P’ (2.6) 
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where 6r Q , b) and 5s @, b) are analytic functions of the parameter p (in the neigh- 
borhood of p = 0) and any finite parameter b. We know that the expansion of the func- 

tion u (t, p, b) ln powers of the parameter ~1 contains secular terms, 

u(t, p, b)= i pL”+t--b) 
I.=1 

U1 (t) = cost, us (t) = Cs (l/z - ‘/&OS 2t) (2.7) 

where uk (t - b) contains a secular term of the order tkw2 . 
L e m m a 2.1 . There exists a number ~0 > 0 such the the following estimates are 

validfor 1~1 <po: 

lu(t* P* Ql<BlIPL 
au (t> P, 4 

i3b j<Btlpl, 1 au(;;‘b) I<Bs v/1 (2.8) 

where the constants B1, B2 , B, do not depend on p and b. 

The proof follows directly from formulas (2.4) and from the fact that the series obtain- 
able by differentiating series (2.4) converges uniformly in t. 

Let us assume that p. is so small that B1po < x0, so that, by virtue of (2.8) we also 

have 1 u 1 < 50, where x0 is defined in expansion (1.3). 
Now let us make the following substitution of varaibles in Eq. (1.1): 

5 (t) = u (t. P, b) + Y (t) (2.9) 

In order to ensure that the function x (t) satisfies the zero initial conditions we require 
that 

y (0) = -U (0, P, b), Y’ (0) = --u’ (0, P, b) (2.10) 

Recalling that U” + u = f (u), we can rewrite the equation for Y in the form 

Y’ + Y = f (u + Y) - f (4 + E(P (t) (2.11) 

The parameters p and b are as yet arbitrary. Let us assume that they are functions of 
the patameter E such that lim y(t)=0 

f-++J 
(2.12) 

By virtue of Lemma 1.1 the solution of Eq. (2.11) under initial conditions (2.10) and 
condition (2.12) is equivalent to the solution of the system of functional equations 

y (t) = EST + S[f (u + Y) - f (41 (2.13) 

u (0, p, b) - Aecosa + &if (u + Y) - f (u)l = 0 (2.14) 

U’ (0, p, b) - Aesina - Lr [f (u -I y) - f (IL)] = 0 (3.15) 

where the operator S and the functionals Lr and L, are defined by Eqs. (1.6) and the 
numbers A and a by Eqs. (1.9). 

We must determine the three unknown functions y (t, E), p (E) and b (e) from the sys- 
tem of three functional equations (2,13)-(2.15). If this is possible, then the hypothesis 
formulated at the end of the preceding section is valid. 

3. Conitructfng the a*ymptotfo series, Let us attempt to find the for- 
mal solution of system (2.13)-(2.15) in the form of series in powers of the small para- 
meter e, 

p= i ekpk, b= 5 ekbktl, y(t)= i e%,(t) (3 I) 

k=l k=l k=l 

From now on we shall denote the k-dimensional vector (ar....ak) by ak. Substituting 
expansion (3.1) into (2.7). we obtain 
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u(C P, 4 = 2 ~~(4 pk, bkyk, 
ii=1 

VI (t) = cos t 

where vk contains a secular term of the order k’s, k > 2. 
Since the function f (5) is analytic, it follows that 

The expansion of 8 in powers of the parameter e is of the form 

yk == 5 Pi, (Yi) ,+I* 

i-k+1 

P*g (Y*) = 2 %qt * * ** Ynk 
i=l fl,...:,nk=l 

n,+...+nk=i 

The expansion of the function f’ (u) can be written as 

r’(“I=jj ejfjl(vjh fjllvj)= i ~lCfPt,,_,(vi) 

j&l i=ll=2 
Similarly, i+-z=j 

I’k’(u)=~ “‘fjx(vj), !j~(vj)=~~‘. . .(I-k+l)ClPi,l_k(V*) 
i=o i=l 1-k 

From (3.5) and (3.1) we obtain . ?n--lna-1 

y!'(u)= $$ Em~,,l(Vm-l,Ym-,f, F,,l= 2 r: fjl@j)% 

T?l=l ial j=l 

Expressions (3.6) and (3.4) yield 
cc myi-,. m--k 

(3.2) 

(3.3h 

‘(3.4) 

(3.5) 

(3.6) 

(3.71 

m=k i=l j=O 

Substituting ex&nsions (3.7) and ( 3.8) into (3.3)‘ we obtain 

I (u + Y) - f (u) = 2 ““a?, (YP1’ vn-1) 
n=s 

Substituting expansions (4. I) into expressions (2.6). we obtain 
03 

u (0, I”, b) = 2 fpk cos bl - ul$ sin bl + ‘Pk @k-r’ b,-,)I ek 
Ii=1 

(3.9) 

(3.10) 

Substituting expansions (3.9) and (3.10) into Eqs. (2.13)-(2.15) and equating the 
coefficients of equal powers of the parameter E, we obtain the recursive system of equa- 
tions 
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If the operator S and the functionals L1 and L, can be applied to the functions 

a,, (S’rl-l. ~~-1) at each step, then all systems (3.11) can be solved successively. This 
means that formal series (3.1) can, in fact, be constructed. 

From now it will be convenient for us to use the terminology of functional analysis. 
We denote the set of functions continuous for 0 < t < ,- IL- and satisfying condition 

(1.2) by B”. This set is a Banach space if the quantity appearing in the.left side of in- 
equality (1.2) is regarded as the norm of the function 2~ tr). Similarly, Ylt’ is the Banach 
space of functions continuous for U < .t c -1 \. with the norm 

II ‘1, Il,1r, “1117{“Yf 1Cp (t) 1 (1 -t t’p”} (0 < f < .@I (3. I”) 

Le m ma 3.1 . The operator .-; acting from the space N1” into 121% for any II and is 
bounded. The functionals L: and I., are also bounded in U“. 

The proof of this Lemma is elementary. It requires the use of explicit expressions 
(1.6) for the operator S and of the functionals L, and L,. 

Theorem 3.1. If T E H”, then all of the equations of(3.11) can be solved suc- 
cessively ; moreover, !/I E I$>. y, E B”, !,n ,3 E iit1 for ti -- O.i... 

Proof. If g, E B”. then by Lemma 3.1 we have g1 = SU, E ~0. Further, 11~ ==S(D,(y,, 
VI), where @&, v,) is a poynomial which does not contain the zeroth power of yr. The 
function VI (t) is bounded, so that Qs (~1, vl) E B” , and we infer by Lemma 3.1 that 
Y, = S@,Z(YI~I) E B”. It can be shown in similar fashion that y3 E B”. We shall prove the 
theorem by induction. Let g/3 E B”,...- yn+3 E Bn. Let us prove that this implies that 
Y,G E Bntr. Since vk (t) contains a secular term of the order tk-2 for k > 2, it follows 
by formula (3.4) that P+ b (vi) contains a secular term of the order ti-2 for i > 3. From 

(3.5) and (3.6) we infer that fir; (~7~) contains a secular term of the order tj-“, j >/ 2. 
We now infer from (3.7) and (3.8) that Fnia,i; (vnta_s,, yn+++) E Bntl. From (3.9) we 
infer that Qni4 (~~~3, v,, I) E Bntr, and since ~~~4 = SQ,,,,, it follows that .Y~+~ E P”+’ I 
QED. 

This enables us to construct series (3.1). We shal1 show that these series are asympto- 
tic on the parameter E. 

The expressions involved in the prctical computations of the coefficients of series 
(3.1) are extremely cumbesome. Let us write out the formulas for the quantities 2/Z (tf, 

PZ and b,, y?(t) = QS [(S(p)3 + 2.4 CDS (t - z) %I 

p2 = I/& =l?c:! [ 3 s,Il a sin 2% - 3 CDS 5% + cm 3 03s 2% l- 
03 

4, Proof of the orymptotfc choractar of terisr (3.2) . Let usset 
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N-l 

B = 2 &,+,, ?I= 
iir 

& P.h.9 Y(t)= i 2 Yh. (t) 
h-=0 h=l I;=1 

U (t, E) = u (t, v, B), u= u+ u*.sN 
and seek the solution of system (2.13)-(2.15) in the form 

y= Y+y*E”, b = B + b*z”-‘, p = v + p*P (4.1) 

Lemma 4.1. There exist positive numbers Ed, tk, b,: ~0 such that for 

Ial < e01 1 p* 1 < po, 1 b* 1 < b,, II Y* iI go; < qo (k) (4.2) 

we have the inequalities 

( Y 1 < AI&, 11 I’ (t) ljBN-3< A,% I P I < -43~ 

llvllBk =? 4 (X.)6 I u (t, PL, b) I < As, 1 U (t, E) 1 < AGE (4.3) 

I u* I d Ai (I P’ I + I b’ I) 1/l + t2 (k > N - 3) 

where the constants Ai do not depend on E, u* and b*. 

Proof. All of the above inequalities except the last are readily derivable from 

formulas (4.1). Let us prove the last inequality. Applying the finite increment formula, 
we obtain 
u (t, p, b) - I( (t, Y, B) = @ - v) ZL’~ [t, v + 8 (p - v), B + 8 (b-B)1 + tb -B) 

q,’ It, Y + 8 (p - v), B + f~ (b - B)l (0-o < 1) 

Making use of Eqs. (4.1) and inequalities (2.8), we obtain 

IU*I\(IP*IB~ 1/l+ t2+lb* [ 
IYI+&NIC1*I 

E (4.4) 

Expressions (4.3) and (4.4) imply that the last inequality of (4.3) is valid for suffici- 
ently small E . Let us consider the function 

cp (% Y) = f (u + Y) - f (u) (4.5) 

Lemma 4.2. We can choose the numbers .Q, PO, bo and qo in such a way that fulfil- 
ment of inequalities (4.2) for the function cp (u, y) implies the validity of the estimates 

11 q t”, Y) - 9 t”v y, II&,-2 d ‘seN+’ 
(4.6) 

’ ’ 11 (J (u, Y-I- ENyl*)- ‘J)(u, Y + ~NYs')ll~N-s~~~IIYs*- YI' IIgN-z EN+l 
where the constants Aa and A0 do not depend on E, p* and b*. 

Proof. Expansion (1.3) implies that the following inequalities are fulfilled for the 
function f (z) for I 5 1 < x0 : 

I I' (4 I < Cl I 5 I, If (21) - f (4 I< co_ I x2 - Xl I (4.7) 

Let us choose the numbers co, be, q. and p. in such a way as to ensure fulfilment of 
inequalities (4.3) and the inequality 1~~1 + 11~1 < x0. By virtue of (4.7) this means that 

Applying the finite increment formula, we obtain 

~(u,Y)--(P(~,~)=(u-u)~~ ~+6(u--), y+6(Y--)1-t 

+(Y- y)$[u+6(u--), y+e(Y--)I (0<6<1) 

Making use of inequalities (4.8), we find that 
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cp(~l~)--cp~~~Y)l<~NI~*Ic*(lyI+IYl~i-eNly*l(IuI+~u~+~yI+~YI) 

Applying inequality (4.3) for u*, we obtain 

119 (% Y) - ‘? (u, Y) II,,_, < 4&aN (1 P* 1 + 15’ I)(! y Ii&V-3 + If ?I &+d + 

+ 8” IIY ll,&L, sup {(I 24 I + I f!J I + I Y I + I y I)(1 + W% 0 < t 4 + -0 (4.9) 

But by virtue of Lemma 4.1 for sufficiently small a, Up, b* and Q, we have 

2 
IjY JJgiv-3 B A~JIYJI~iv-3 d A&, JUI <A& lU<A3e, I y I B l/?/J/ +“-yz(l + t ) ‘/2 (N-31<&* 

IyI ~~~Y/IBN-3e 
--ff (1 + + (N-3) Q Au8 

Substituting these estimates into (4.9), we obtain the first inequality of (4.6). The 
second inequality can be obtained in similar fashion. It is clear that the first N coeffi- 
cients of the expansions of the functions ‘p (u, y) in powers of a coincide with the first 

N coefficients of the expansion of the f~c~on rp (U, Y). By virtue of (3,9) we have 

CPV, Y)= 2 an an (Y,_,, v,_J + EN+’ x (t, a) (G.10) 
n=2 

where 8 (t, c) is some known continuous function. Since Y E BN-s, and since 5’ is a 
bounded function, it follows that ‘p (u, Y) G gNw3. In precisely similar fashion we obta 

,V 

2 e”a), tY,_l, V,_,)E 3N-3 
n=Iz 

Hence, x (t, e) E BN-3 and (4.10) yields the following equation for cp (u, y) : 

cp(=, l?f)=T,(=, Yl--‘pw, Y)$_ i snmn (Y,_l, “+J + ENtl x tt. 8) (/t.lf) 
?I=42 

Substituting expression (4.11) into Eq. 4.13) and making use of Eqs. (3.11) for n = 
= 2,...N, we obtain an equation for y*, 

y* = ES@* (y*,/&*, b*, E), w = E-m+l) [s, (u, y) - cp (67, Y)] 4 x (t, 2) 14.Q) 

Theo r e m 4.1 . There exist numbers Ed, po, b, and no such that fulfilment of ine- 

qualities (4.2) implies that Eq. (4.12) has the unique solution y* = y* (t, e, p*,-+ 
where y* is a differentiable function of in *. b+. and where the following estimates are 

valid : 
(L.23) 

Theorem 4.1 is a simple consequence of Lemma 4.2 and of the principle of com- 

pressed mappings @I. 
Now let us derive the equations for determining p* and b*. We note that the first N, 

coefficients of the expansions of the functions u (0, p, b) and u (0, Y, B) in powers of 
a coincide. The first A’ coefficients of the expansions of the functions U’ (0, ~1, b) and 
~‘(0, Y, B) also coincide. Recalling Eqs. (3, lo), we obtain 

ti 
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where ‘p* (a) and $* (E) are some continuous functions of the parameter a. Substituting 
expansion (4.14) into Eqs. (2.14) and (2.X), we obtain the following equations for deter- 

mining P* and b* : u* (0 p* b*) - e[cp* (e) - L,O* (y*, p*, b*, 41 =O 
u’* (6, pi, b*) - e[$* (e) i- Id* (Y*, IL*, b*, e)] = 0 (4.15) 

me u* = emN [u (0, p, b) - u (0, Y, @I 

Substituting the function y* (t, p *, b*, e) determined from Eq. (4. U) into Eq. (4.15). 

we obtain a system of two equations for determining p* and b*. Lemma 4.1 implies that 

1 u* (0, CL*, b*) 1 d c ( [PC’ 1 i- 1 b* I). Hence, U* (0, 0, 0) = 0. It is easy to show that 
u’* (0, 0, 0) = 0. Hence, Eqs. (4.15) have the solution ,pg = b* = 0 for e = 0 . Let 

us show that the Jacobian of this system is different from zero for e = p* = b* = 0. In 

fact, au* (0, p*, b’) 1 au (0, P, b) all au (0, IL, b) -- 
ap* =p all all*- ap 

Recalling expression (2.6) for u (0, p, b), we obtain 

! 

Similarly, we can show that 

au* ( i au.*, 
ab' o= - Asina, ( ) 

au**, 
To 

=sina, 
( ) ab’ = A cos a 

0 

(4.16) 

(1.17) 

Expressions (4.16) and (4.17) imply that for e* = u* = b* = 0 the Jacobian of system 
(4.15) is equal to the number A > 0. By the implicit function theorem, system (4.15) 

has the solution P* (e), b* (e) in a sufficiently small neighborhood of the point e = 
= P* = b* = 0 ; moreover, p* (e) and b* (E) tend to zero as e + 0. 

We have thus proved the following theorem. 
T heore m 4.2 . The solution of system (2.13)-(2.15) can always be found in the 

form (4. l), where b* (a), p*.(e) and \I y* 11 nN-2 tend to zero as e+O. Hence, series (3.1) 

are asymptotic. 
The proposed method is also suitable for investigating conservative systems with many 

degrees of freedom. 
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